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Abstract 

Oligocene resin from New Zealand's Rotowaro coalfield displays DTA and DTG traces similar to those of other fossil 
resins. It modifies the thermal behaviour of low rank coal in raising the peak combustion temperature and lowering its rate of 
combustion, a behaviour that may be common among liptinite macerals. The effect is not additive and unlike other coal 
constituents the resinite component does not deteriorate with time. © 1997 Elsevier Science B.V. 
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1. In t roduct ion  field and of subbituminous coal immediately adjacent 
to the resin. Results are given below. 

Resinite is a maceral of  the liptinite group. It is 
common in New Zealand's Waikato subbituminous 
coals, averaging up to 6% by volume. Macroscopic 2. Exper imental  
resin bodies are also common in seams from this 
region [1], typically ranging in size from small specks Initially a series of  tests were made using coal, resin 
to a few centimetres, and a 50-50 blend of  the two. The same samples were 

Benfell et al. [2] have suggested that liptinite may reanalysed 18 months later to assess the effects of 
cause a significant effect on the thermal behaviour of  sample storage. An additional blend of  5% resin and 
coals of which it is a significant component. In order to 95% coal was tested to simulate a maximum in situ 
evaluate the extent and nature of  any modification to coal quality for resinite content. 
combustion that a liptinite maceral may exercise, Both coal and resin samples were prepared for 
thermogravimetric analyses were made of  an Oligo- analysis as described by Benfell et al. [3]. Proximate 
cene resin body from New Zealand's Rotowaro coal- analyses of each sample were made using the proce- 

dures described by Beamish [4]. Further fractions of 
all samples were then analysed by thermogravimetry 

*Corresponding author. Fax: 61 49 216 925; e-mail: kbenfell@- using the procedures given by Benfell et al. [5] to 
geology.newcastle.edu.au, establish the peak temperature (T6), the maximum rate 
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Table 1 

Combustion and proximate analytical data for Rotowaro coal, resin and blends 

Combustion data Proximate Analysis 

Run T6 Rc T8 M ~ Ash VM " Fixed 
date °C %wt min ~ °C % % % carbon 

daf db daf %, daf 

Rotowaro coal April 1995 431.0 33.08 476.0 15.0 2.7 47.0 53.0 

Rotowaro coal Nov 1996 427.6 25.45 470.2 12.9 2.7 46.8 53.2 

Rotowaro resin April 1995 534.8 1 t.03 598.4 1.2 0.0 99.9 0•1 

Rotowaro resin Nov 1996 530.6 11.15 591.9 0.8 0.1 99.9 0.1 

Coal : Resin 50 : 50 blend Nov 1996 441.9 16.65 588.3 . . . .  

Coal : Resin 50 : 50 blend Nov 1995 430.2 14.77 590.7 6.7 1.3 77.4 22.6 

50 : 50 blend (new) Nov 1996 432.8 15.26 588.1 . . . .  

Coal : Resin 95 : 5 blend Nov 1996 427.6 24.06 479.2 12.6 2.6 50.9 49.1 

"M = moisture content; VM = volatile matter content. 
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thermal  charac ter  of  modern  resins is de te rmined  by  
Fig. 1. (a) TG, DTG and DTA curves of Rotowaro resin. (b) their  re la t ive ly  high levels  of  vola t i le  componen t s  
TG, DTG and DTA curves of Rotowaro subbituminous coal• (c) 
TG, DTG and DTA curves of 50 : 50 Rotowaro coal : resin whose  influence is p ronounced  at lower  temperatures .  
blend. A number  of  peaks  within the lower  por t ion of  their  
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DTA range tend to be of high intensity with some combustion profile has three DTG peaks: the smallest 
significant events occurring under 100°C. With aging at 333.4°C, a major event at 441.9°C, and a minor, 
and fossilisation the intensity of thermal events broad but well-defined event at 526.9°C. The first 
decreases and they become important in the higher event is akin to that found first in the resin analysis 
temperature portion of the record, although peaking at a slightly lower temperature. 

The thermal record of the Oligocene Rotowaro resin Again no clear record of this event is seen in the 
most closely matches those of Atlantic Coastal Plain DTA trace. The main exothermic event arises from the 
resins [7]. These resins undergo two major thermal combustion of coal and is marked by a distinct 
events below 600°C, commonly in the range 220- exotherm in the DTA record that peaks some 10°C 
290°C and about 440--460°C suggesting that a dicar- higher than when the coal combusts alone. The final 
boxylic acid may be a significant component of these event corresponds to the second resin exotherm but 
resins [cf. [8,9]]. A broad, somewhat hummocky DTA again peaking 8°C sooner than occurs for the 
shoulder in the Rotowaro resin record corresponds to unblended resin. 
the lower temperature of the two prominent events The effects of sample storage can be seen in the key 
defined in the DTG trace (Fig. 1 (a)). This first major DTG parameters presented in Table 1. The proximate 
event shows a smaller weight loss than the second, analysis data do not show any significant changes that 
which is marked by a large exothermic event in the occurred in coal or resin, other than a decrease in the 
DTA curve. The pure resin has a high temperature of moisture content of the samples. However, T6 values 
char burnout, T8, and a low maximum rate of combus- drop by 3.4°C for coal and 4.2°C for the resin on 
tion (Table 1). storage, and T8 values reduce by about 6°C for both 

The combustion pattern of the unmodified Roto- coal and resin. In particular, the maximum rate of 
waro coal is typical of New Zealand subbituminous combustion of coal is lowered by 23% from its 
coals [3]. The major exothermic event and its corre- original value, with that of the blend being reduced 
sponding DTG peak are narrow and the maximum rate by 11%. A fresh batch of 50-50 blend, made from 
of combustion is high (Fig. l(b), Table 1). the end members, confirmed this result with the 

The 50-50 blend displays a behaviour that incor- standard deviation of these two blend values 
porates aspects of both end members (Fig. l(c)). The (±0.25% wt min -1) lying within the instrument 
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Fig. 2. Combustion rates of Rotowaro coal, resin and blends. 
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